
Electron-Solid Interactions

• Where do they go?
– Elastic scattering

• Single scattering
• Plural scattering
• Continuous slowing down 

approximation
• Multiple scattering/diffusion

• What do they do?
– Inelastic scattering

• Energy loss mechanisms

Ludwig Reimer, “Scanning Electron Microscopy”, Springer-Verlag (1985)
Ludwig Reimer, “Transmission Electron Microscopy”,4th, Springer-Verlag (1997)



Elastic Scattering – Rutherford Cross-section
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Electrons that pass through the 
area dσ are scattered through the 
angle θ into a solid angle dΩ.  

dσ / dΩ is referred to as the 
differential scattering cross 
section.
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Rutherford Differential Scattering Cross-Section

Consider angular momentum, resolve motion into horizontal and vertical 
components.  At the start of the trajectory vh is zero, at the end vh=vsin θ:
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• Scattering proportional to Z2

• Scattering forward peaked
– Singularity at θ = 0



Elastic Scattering – Other Cross-Sections

• Need to account for screening of nuclear charge by atomic 
electrons
– Quantum mechanical treatment considers superposition of plane 

wave and spherical scattered wave

Plane wave : ψ = ψ 0e
2πik 0z

Scattered wave : ψ = ψ 0 f θ( )e2πik0 z

r
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= f θ( )2

θ

dθ

• f(θ) is the angle dependent scattering amplitude and represents 
Fraunhofer (far-field) diffraction by the atomic potential

• Numerous cross-sections derived according to form of potential



Screened-Rutherford Cross-Section
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θ0 = characteristic scattering angle, typically 10’s mrad at 100 kV
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Mean-Free-Path
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N = atoms /unit volume
n = atoms /unit area
nσ = scattering area fraction
NA = Avogadro's number
A = Atomic number
ρ = density

z

Element Z Λ (nm) Range (µm)50 kV
C 6 83 22.6
Al 13 49 16.7
Cu 29 10.7 5.1
Ag 47 7.7 4.3
Au 79 4.6 2.3
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Angular Distribution & Beam Broadening
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Unscattered electrons
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⇐ Normalized single scattering function

I(r) or I(θ)

Gaussian

Appropriate for m< 25 z



Continuous Slowing Down Approximation

• Energy transfer, W (<< E , incident electron energy), 
occurs through Coulomb interaction between incident 
electrons and atomic electrons.  Mean energy loss/path 
length is -dEm.  Stopping power, S:
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Diffusion - Everhart’s Single Scattering Model

• Electron energy decreases 
with depth as v = (cTρz-v0

4)1/4

• Intensity decreases as dI(z) = 
NAρσπ/(2A) I(z)dz

• Electrons are backscattered 
by single scattering through 
angles π - θmin < θ < π

θmin

θ
z

z = R

z = 0

z’ = z/R

η increases with increasing 
Z, R decreases with 
increasing Z.  Character of 
proximity effect changes 
with atomic number
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0.012Z +1



Monte-Carlo Simulation

Note changes in horizontal and 
vertical scales as the atomic 
number increases:  Si 14, Cu 29, 
Au 79

Note changes in horizontal and 
vertical scales as the atomic 
number increases:  Si 14, Cu 29, 
Au 79



Scattering in Gas Targets

N2 Ar

Ludwig Reimer, “Scanning Electron Microscopy”, Springer-Verlag (1985)



Inelastic Scattering

• Energy loss occurs through a variety of 
mechanisms
– Molecular oscillations/phonons

• ∆E = 20 meV - 1 eV

– Conduction/valence electrons
• Plasmons
• Inter- or Intra-band transitions
• ∆E = 1 eV - 50 eV

– Core electrons
• Ionization of inner shell electrons

– X-rays
– Auger electrons

• ∆EK = 110 eV (Be) - 80 keV (Au)

Described by dielectric theory -
related to optical constants of 
material.  Electron energy-loss 
spectra and those for light and 
x-rays are related

Described by dielectric theory -
related to optical constants of 
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Energy loss in C is ≈ 
0.24 eV/nm at 100 keV

Energy loss in C is ≈ 
0.24 eV/nm at 100 keV



Plasmon & Optical Losses I
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Plasmon & Optical Losses II
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Introduce oscillators with other characteristic frequencies,ωb, to 
represent bound electrons.  Resonances occur when ω=ωb.  
Passage of high-energy electron results in frequency pulse that 
can excite many resonances.

Introduce oscillators with other characteristic frequencies,ωb, to 
represent bound electrons.  Resonances occur when ω=ωb.  
Passage of high-energy electron results in frequency pulse that 
can excite many resonances.

Lorentz oscillators:  http://webphysics.davidson.edu/Projects/AnAntonelli/myThesis.html



Dielectric Theory

Optical constant : ε = ε1 + iε2 = n + ik( )2

Energy dissipation : dW
dt

= E
•

.D

Electron : ρ = eδ x − vt( )
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20 eV loss at 100 keV 
gives a θE of 0.1 mrad

20 eV loss at 100 keV 
gives a θE of 0.1 mradσinel ≈ 20 σel/Zσinel ≈ 20 σel/Z



Method of Virtual Quanta

“Energy Transfer Between Electrons and Photoresist:  Its Relation to Resolution”, 
Geng Han and Franco Cerrina, J. Vac. Sci. Technol. B18 p3297 (2000)



Energy Transfer

Electrons become bluer and dimmer as their energy increasesElectrons become bluer and dimmer as their energy increases

“Energy Transfer Between Electrons and Photoresist:  Its Relation to Resolution”, 
Geng Han and Franco Cerrina, J. Vac. Sci. Technol. B18 p3297 (2000)



EELS Spectrum (SiN)
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